Fonte: Extraído do original


Scientific python pandas

An Introduction to Scientific Python – Pandas

Pandas has got to be one of my most favourite libraries… Ever.
Pandas allows us to deal with data in a way that us humans can understand it; with labelled columns and indexes. It allows us to effortlessly import data from files such as csvs, allows us to quickly apply complex transformations and filters to our data and much more. It’s absolutely brilliant.

Along with Numpy and Matplotlib I feel it helps create a really strong base for data exploration and analysis in Python. Scipy (which will be covered in the next post), is of course a major component and another absolutely fantastic library, but I feel these three are the real pillars of scientific Python.

So without any ado,

let’s get on with the third post in this series on scientific Python and take a look at Pandas. Don’t forget to check out the other posts if you haven’t yet!


First thing to do its to import the star of the show, Pandas.

This is the standard way to import Pandas. We don’t want to be writing ‘pandas’ all the time but it’s important to keep code concise and avoid naming clashes so we compromise with ‘pd’. If you look at other people’s code that uses Pandas you will see this import.


Pandas is based around two data types, the series and the dataframe.




Escrito por zrhans

Professor at UFSM

Deixe um comentário

Faça o login usando um destes métodos para comentar:

Logotipo do

Você está comentando utilizando sua conta Sair /  Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.